Transición de la industria de la construcción española hacia el escenario nZEBs MADRID 4 de noviembre de 2013

Ricardo García San José Vicepresidente Comité Técnico

Reflexiones desde ATECYR

DIRECTIVA 2010/31/CEE: Articulo 9

EDIFICIOS DE CONSUMO DE ENERGIA CASI NULO

Después del 31/12/18 los edificios nuevos que estén ocupados y sean propiedad de autoridades públicas deben ser de consumo de energía casi nulo.

2019

A mas tardar del 31/12/20 todos los edificios nuevos deben ser de consumo de energía casi nulo. 2021

Se pueden incluir objetivos diferentes de acuerdo con la categoría del edificio.

DIRECTIVA 2010/31/CEE: Articulo 7

EDIFICIOS DE CONSUMO DE ENERGIA CASI NULO

Artículo 2: DEFINICIONES

Edificio de consumo de energía casi nulo. Es un edificio con un nivel de <u>eficiencia energética</u> muy alto (conforme al Anexo I); la <u>necesidad</u> muy baja <u>de energía</u> debería estar cubierta, en muy amplia medida, por <u>energía</u> procedente de fuentes <u>renovables</u>, incluida energía procedente de fuentes renovables <u>producida in situ o en el entorno</u>.

25 kWh/(m²-año) ?

Objetivo: Reducir los costes y la emisión de contaminantes limitando el consumo total de energía en los edificios.

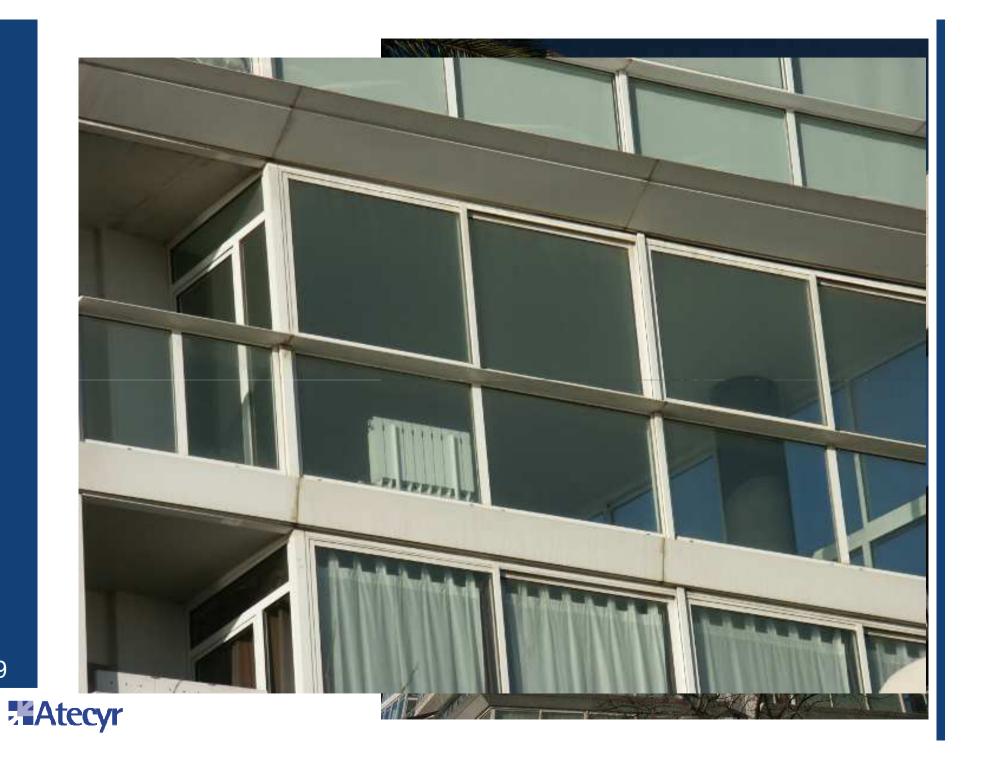
Consumo =

Demanda / rendimiento

Demanda del edificio

Rendimiento de las Instalaciones

Para lograr dicho objetivo se debe actuar de dos maneras:


Reduciendo la Demanda del edificio

DISEÑO OPTIMO DEL EDIFICIO, O SU REHABILITACION

Aumentando el Rendimiento de las Instalaciones

SELECCIÓN DE LAS INSTALACIONES MAS EFICIENTES

Reglamento Delegado (UE) 626/2011

CLASE		ACONDICIONADORES DE AIRE	
	A +++	8,50 < SEER	
	A ++	$6,10 < SEER \le 8,50$	
ON	A+	$5,60 < SEER \le 6,10$	
C	A	$5,10 < SEER \le 5,60$	
DC ERA	В	$4,60 < SEER \le 5,10$	
MODO REFRIGERACION	DISEÑO ECOLOGICO		
	A+++	5,10 < SCOP	
	A++	$4,60 < SCOP \le 5,10$	
Z	A +	$4,00 < SCOP \le 4,60$	
	A	$3,40 < SCOP \le 4,00$	
DC ACC	В	$3,10 < SCOP \le 3,40$	
MODO CALEFACCION	DISEÑO ECOLOGICO		

Reglamento Delegado (UE) 811/2013

REGLAMENTO 811. ETIQUETADO ENERGETICO. A partir del 26/09/2015			
	CLASE EFICIENCIA ENERGETICA	EFICIENCIA ESTACIONAL	
S	A +++	$150 \leq \eta_{\rm s}$	
Ħ	A++	$125 \leq \eta_{\rm s} < 150$	
	A +	$98 \leq \eta_s < 125$	
	\mathbf{A}	$90 \leq \eta_{\rm s} < 98$	
AC 7.	В	$82 \leq \eta_s < 90$	
_ ~ V I			

DISEÑO ECOLOGICO

REGLAMENTO 811. ETIQUETADO ENERGETICO. A partir del 26/09/2015

	CLASE EFICIENCIA ENERGETICA	EFICIENCIA ESTACIONAL
AJ/	A+++	$175 \leq \eta_{\rm s}$
· B	A++	$150 \leq \eta_{\rm s} < 175$
	A +	$123 \leq \eta_{\rm s} < 150$
	A	$115 \leq \eta_{\rm s} < 123$
IOI ER	В	$107 \leq \eta_s < 115$
EN APLICAC TEMPI	DISEÑO E	COLOGICO

CALEF

ENERGIAS RENOVABLES

ELECTRICIDAD	CALOR	BOMBA DE CALOR
EOLICA	GEOTERMICA DIRECTA	GEOTERMICA
SOLAR FOTOVOLTAICA	SOLAR TERMICA	HIDROTERMICA
HIDRAULICA	BIOMASA	AEROTERMICA
OCEANICA		
GASES DE VI		
GASES DE PLANTAS		
BIOG		
(*): HABITUALMENTE UTILIZA		

ENERGIAS RENOVABLES

ELECTRICIDAD	CALOR	BOMBA DE CALOR
EOLICA	GEOTERMICA DIRECTA	GEOTERMICA
SOLAR FOTOVOLTAICA	SOLAR TERMICA	HIDROTERMICA
	BIOMASA	AEROTERMICA

Más cogeneración

Energías Renovables aplicables en la Edificación

ENERGIAS RENOVABLES

ENERGIA	APLICACIÓN			APOYO	
ENERGIA	CALEFACCION	REFRIGERACION	ACS	Aroio	
BIOMASA	TOTAL (1)	ABSORCION	TOTAL (1)	NO (1)	
SOLAR TERMICA	POCO	ABSORCION	FRACCION	SI	
GEOTERMICA	TOTAL (1)	TOTAL	FRACCION (2)	POCO	
HIDROTERMICA	TOTAL	TOTAL	FRACCION (2)	POCO	
AEROTERMICA	TOTAL	TOTAL	FRACCION (2)	POCO	
COGENERACION	ALTO	ABSORCION	ALTO	SI (3)	

ABSORCION: Requieren equipos de absorción lo que encarece la solución.

COGENERACION: Deben solaparse las curvas de demanda térmica y eléctrica, por lo que requieren apoyo

(1): Aunque pueden diseñarse para cubrir la demanda total, lo adecuado suele ser disponer de apoyo tradicional

(2): Suelen tener limitación de temperatura de producción, por lo que resulta habitual disponer de apoyo en ACS

(3): Hay que combinar las producciones de calor y electricidad

TIPO EDIFICIO	APLICACIÓN			
TIPO EDIFICIO	CALEFACCION	REFRIGERACION	ACS	
VIVIENDAS	ALTO	BAJO	ALTO	
OFICINAS	BAJO	ALTO	BAJO	
HOTELES	MEDIO	ALTO	ALTO	

15

No todo vale para todo La naturaleza no da nada gratis

Precio Precio Precio

ANALISIS INVERSIONES

Alternativa 1:

COSTE INICIAL

CONSUMO DURANTE LA VIDA UTIL DE LA INSTALACION

Alternativa 2:

COSTE **INICIAL**

CONSUMO DURANTE LA VIDA UTIL DE LA INSTALACION

Alternativa n:

COSTE INICIAL CONSUMO DURANTE LA VIDA UTIL DE LA INSTALACION

Debe optarse por la opción, que al término de su vida útil, mejor desde los puntos de vista Técnico, sea Medioambiental y Económico. **#Atecyr**

DIRECTIVA 2010/31/CEE: Articulo 6

EDIFICIOS NUEVOS

Se considerará la <u>viabilidad técnica, medioambiental y</u> <u>económica</u> de instalaciones alternativos de alta eficiencia, siempre que estén disponibles, como:

- SISTEMAS DESCENTRALIZADOS CON ENERGIAS RENOVABLES.
- COGENERACION.
- CALEFACCION O REFRIGERACION CENTRAL O URBANA, especialmente si se basa total, o parcialmente en energías renovables.
- BOMBAS DE CALOR.

y el CONTROL?

Cada uno debe ser responsable de lo que firma.

De ser así el control externo es menos importante.

A PESAR DE ELLO ES VITAL QUE LA ADMINISTRACION ESTABLEZCA LOS MECANISMOS NECESARIOS PARA UN ADECUADO CONTROL DEL FUNCIONAMIENTO DEL SISTEMA.

DIRECTIVA 2010/31/CEE: Artículo 7

EDIFICIOS EXISTENTES

Los Estados miembros tomarán las medidas necesarias para garantizar que, cuando se efectúen reformas importantes en edificios, se mejore la eficiencia energética del edificio o de la parte renovada.

REHABILITACION ENERGETICA

REHABILITACION?

* De la envolvente?

Por supuesto

* De las Instalaciones?

Sin duda

* Energética ?

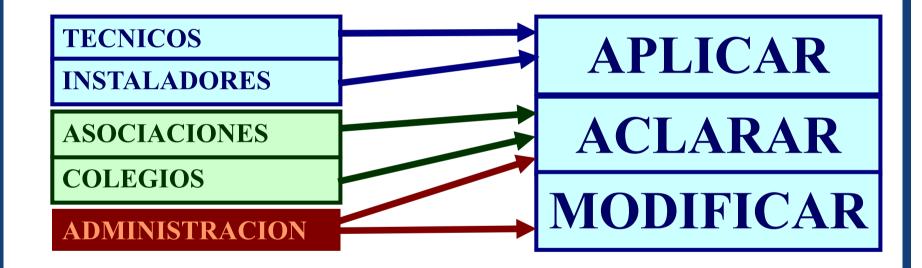
Evidente

REHABILITACION INTEGRAL

REHABILITACION: ACTUACIONES PREVIAS

Antes de abordar la rehabilitación deben realizarse las intervenciones reglamentariamente establecidas:

- * Inspección Técnica del Edificio.
- * Inspección Instalaciones (Eléctricas, ascensores, etc.).
- * Inspección Instalaciones Térmicas.
- * Certificación Energética.
- * Auditoria.


Como !!!
que aún no se han establecido?

Menos subvenciones Mas financiaciones

Qué PUEDO HACER YO:

Profesionalidad

Transición de la industria de la construcción española hacia el escenario nZEBs MADRID 4 de noviembre de 2013

Ricardo García San José Vicepresidente Comité Técnico

