

ALMIRANTE CADARSO 33: REHABILITACIÓN Y ANÁLISIS ENERGÉTICO DE EDIFICIO RESIDENCIAL EN EL ENSANCHE DE VALENCIA

Luis Irastorza Ruigómez

Director General

Edifesa

DESCRIPCIÓN Y ALCANCE DEL PROYECTO

Localización

Alzado principal

Situación inmueble antes del inicio

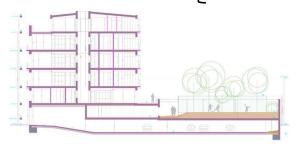
Acceso al jardín

Fachada interior

Escalera

Patio Interior

Interior edificio



Jardín de la parcela

DESCRIPCIÓN Y ALCANCE DEL PROYECTO (cont.)

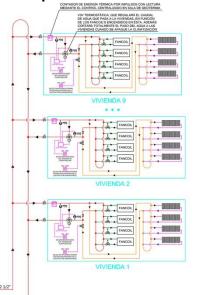
Alcance de la rehabilitación

- Edificio de 1930 con fachada protegida
- Intervención | reparación fachada | carpintería exterior | estructura | instalaciones |

Sección transversal

Alzado principal

Superficies


- Sobre rasante : Viviendas (9 uds)
 - +local comercial y piscina: 1.637 m²
- Bajo rasante: Aparcamiento: 413 m²

TOTAL: 2.050 m²

Precio de adjudicación: 1.560.000 €

Descripción del escenario base

- Cumple holgadamente CTE DBHE 2013
- Esquema de principio de la climatización

- -Bomba de calor geotérmica de 92 kW con 5 pozos geotérmicos
- Distribución a 2 tubos (o frío o calor)
- -Sistema de emisión mediante fancoils y radiadores de baja temperatura

Imágenes del proyecto

Salón

Jardín interior

Dormitorio

ALGUNAS CUESTIONES RELEVANTES PARA ABORDAR LA OPTIMIZACIÓN ENERGÉTICA

Procedimiento seguido para este Proyecto

Profundas discrepancias entre los consumos previstos por el CTE y los reales

- Recomendación UE 2016/1318 de la Comisión (sobre las Directrices para promover los edificios de consumo de energía casi nulo)
- Enfoque actual del CTE 2013 y del CTE 2018
 - Perfil de ocupación que exagera los consumos
 - El modelo de simulación utilizado toma muchos valores por defecto: infiltración, rendimiento instalaciones, puentes térmicos

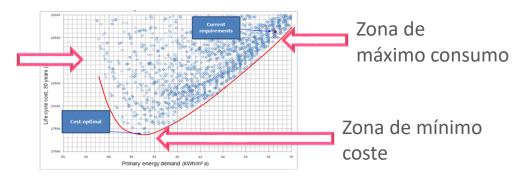
PERFIL OCUPACIÓN CTE 2013

USO RESIDENCIAL	(24h BAJA)				
	1-7	8	9-15	16-23	24
Temp Consigna Alta (°C)					
Enero a Mayo	-	-	-	= /	-
Junio a Septiembre	27	-	134	25	27
Octubre a Diciembre	•	-	-	. = .	-
Temp Consigna Baja (°C)					
Enero a Mayo	17	20	20	20	17
Junio a Septiembre	-	-	-	-	-
Octubre a Diciembre	17	20	20	20	17

LA CALIFICACIÓN ENERGÉTICA ES DEL PROYECTO, NO DEL EDIFICIO EN FUNCIONAMIENTO

- Resultados obtenidos de edificios monitorizados

Dudas fundadas sobre si la estanqueidad del edificio (estándar PASSIV-HAUS) es la estrategia adecuada en un clima mediterráneo


METODOLOGÍA UTILIZADA

FASE I: DEFINICIÓN DE LA SOLUCIÓN DE OPTIMIZACIÓN ENERGÉTICA DEL PROYECTO

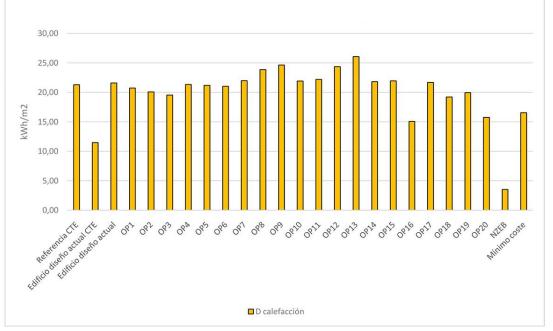
- A) Perfil de ocupación
 - Más realista pero de menor consumo que el CTE 2013
 - Temperaturas de consigna entre 6 pm y 12 pm
- B) Modelo de simulación energética del edificio en TRNSYS (Dinámica)
- C) Método de coste óptimo del Reglamento delegado UE Nº244/2012
 - a) Coste global (Inversión) vs Consumo

b) Cálculo del Coste Global

Zona de mínimo consumo - nZEB

$$C_g(\tau) = C_I + \sum_j \left[\sum_{i=1}^{\tau} (C_{a,i}(j) \times R_d(i)) - V_{f,\tau}(j) \right]$$

Plazo de cálculo: 20 años


- Tasa de actualización : 4%

METODOLOGÍA UTILIZADA (cont.)

FASE I: DEFINICIÓN DE LA SOLUCIÓN DE OPTIMIZACIÓN ENERGÉTICA DEL PROYECTO (cont.)

D) Definición y cálculo de medidas pasivas que permitan definir los escenarios de mínimo coste y mínima

demanda

Demanda de calefacción

E) Sistemas de producción de energía

- 2 Sistemas de producción centralizada: 100% geotermia o mixto geotermia-aerotermia
- 1 Sistema de producción individual por aerotermia

TOTAL SOLUCIONES ANALIZADAS DE ENVOLVENTE E INSTALACIONES : 45

METODOLOGÍA UTILIZADA (cont.)

FASE I: DEFINICIÓN DE LA SOLUCIÓN DE OPTIMIZACIÓN ENERGÉTICA DEL PROYECTO (cont.)

F) Valoración económica preliminar de las diferentes alternativas

COSTE GLOBAL VS CONSUMO DE ENERGÍA PRIMARIA NO RENOVABLE A 20 AÑOS

METODOLOGÍA UTILIZADA (cont.)

FASE I: DEFINICIÓN DE LA SOLUCIÓN DE OPTIMIZACIÓN ENERGÉTICA DEL PROYECTO (cont.)

- F) Valoración económica preliminar de las diferentes alternativas (cont.)
- Coste global vs emisiones de CO₂ en 20 años

INVERSIÓN VS CONSUMO DE ENERGÍA PRIMARIA

NO RENOVABLE A 20 AÑOS

- Coste mínimo de inversión
- Coste global mínimo en el ciclo de vida
- **SOLUCIÓN ELEGIDA**

CONSUMO ENERGÍA PRIMARIA NO RENOVABLE (A 20 AÑOS) (kWh)

+ 2,6% s/Coste global mínimo y +0,1% s/ Escenario Base Coste global

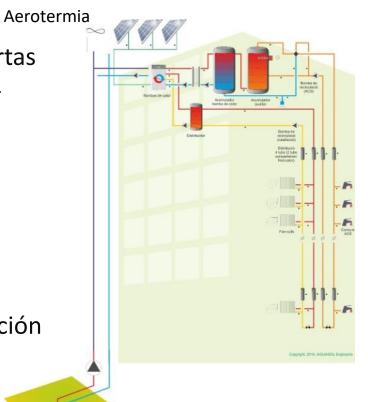
+4,7% s/Inversión mínima y +3,5% s/ Escenario Base Inversión

Emisiones CO₂ - 25% s/Coste global mínimo y -51% s/ Escenario Base

G) Proyecto de ejecución de la solución elegida y valoración económica

DESCRIPCIÓN DE LA SOLUCIÓN ELEGIDA

Envolvente


- Cerramiento exterior: Incremento de aislamiento de fachadas y cubiertas
- Carpintería de fachadas: Mejora de transmitancia media y factor solar

Instalaciones

- HVAC
 - Producción mediante Geotermia + Aerotermia
 - Relación de potencias: 20% Geotermia 80% Aerotermia
 - Uso: 80% del tiempo mediante la Geotermia
 - Terminales: suelo radiante para calefacción, fancoils para refrigeración
- Ventilación mecánica comunitaria sin recuperación
- Producción fotovoltaica para usos comunes (P=11,96 kWp)

Sistemas de Gestión y Control

- Estación meteorológica en cubierta
- Sistema centralizado de control
- Domótica para el control energético de las viviendas

Esquema HVAC Solución elegida

PRÓXIMOS PASOS

FASE II: CARACTERIZACIÓN DEL EDIFICIO UNA VEZ CONSTRUIDO

- Ensayo de Puerta Soplante
- Análisis termográfico de la envolvente
- Rendimiento real de las instalaciones en funcionamiento

CALIBRACIÓN DEL MODELO DE SIMULACIÓN ENERGÉTICO

FASE III: MONITORIZACIÓN DEL EDIFICIO UNA VEZ OCUPADO Y A RÉGIMEN

- Perfil de ocupación real
- Comparación de los consumos teóricos y reales
- Datos de la estación meteorológica en cubierta
- Calibración del modelo de simulación energético
- Elaboración de estrategia para optimizar el consumo energético del edificio

CONCLUSIONES Y PROPUESTAS

- La optimización energética de un edificio requiere:
 - Utilizar perfiles de ocupación realistas
 - Utilizar la metodología del coste óptimo en el ciclo de vida del edificio
 - Caracterizar el edificio una vez construido
 - Monitorizar el perfil de ocupación del edificio y sus consumos
- Necesidad de incorporar un enfoque prestacional en las futuras revisiones del CTE
- Profundizar en el análisis sobre si la estrategia de estanqueidad (estrategia PASSIV-HAU) es adecuada en el clima mediterráneo

Luis Irastorza Ruigómez Alberto Soriano Soriano lirastorza@edifesa.com asoriano@edifesa.com

