
KNAUFINDUSTRIES

LIDERES EN SOLUCIONES ARQUITECTÓNICAS Y CONSTRUCTIVAS

KNAUF

Knauf dispone actualmente de más de 150 compañías en todo el mundo, con más de 25.500 empleados y una facturación anual que supera los 6.000 millones de Euros.

Knauf es el mayor fabricante de placas de yeso laminado del mundo y el mayor transformador de poliestireno expandido (EPS)

CALIDAD TOTAL Y SEGURIDAD CERTIFICADA

Knauf, como grupo lider en soluciones constructivas, dedica importantes recursos al desarrollo de nuevos materiales conforme a las más exigentes aplicaciones que se derivan de las nuevas normativas.

Trabajamos en soluciones que aportan ahorro de energia y facilidad de intalación, aplicando criterios de sostenibilidad.

Cuenta con laboratorios propios de control

de calidad en cada una de sus plantas y laboratorios de I+D en cada pais (IDlab), donde se supervisa la calidad de los productos desarrollados, que luego pasarán a los centros de producción.

LAS PROPIEDADES DEL EPS

Ligereza

DE ESTÁNDAR A HECHO A MEDIDA: A CADA UNO SU PROPIA SOLUCIÓN

- > Hay dos opciones para cada cliente:
- Producto estándar que combina fiabilidad, funcionalidad y diseño.

 Soluciones a medida desarrolladas en colaboración entre nuestros departamentos técnicos para crear productos eco-diseñados, funcionales y estéticos según las necesidades.

UN MUNDO DE VENTAJAS RESPETANDO EL MEDIO AMBIENTE

El EPS tiene excelentes eco-propiedades

Gracias a la poca cantidad de materia prima utilizada para su fabricación (98% aire, 2% poliestireno) y su eficiente proceso de producción a nivel energético, el EPS tiene un excelente eco-balance. El análisis de las DAP de los productos de EPS para aislamiento pone de manifiesto las ventajas desde el punto de vista ambiental del poliestireno expandido. Este análisis estudia el índice ΔΟΙ3 que describe la calidad ambiental de la envolvente del edificio mediante los 3 valores que se obtienen de las DAP en las categorías de impacto "Energía Primaria No renovable (NRPE)", "Calentamiento Global (GWP100)" y "Potencial de acidificación (AP)". El EPS comparado con otras alternativas "ecológicas" necesita menos energía primaria para su producción y **es medioambientalmente mejor**, tal y como se puede **observar en la columna** ΔΟΙ3.

El EPS no emite gases dañinos para el medio ambiente

- Las celdas de EPS únicamente contienen aire.
 Durante la producción de EPS, los gránulos de
 poliestireno, que contienen un gas de expansión,
 que reacciona cuando se calienta aumentando
 su volumen hasta 50 veces. El pentano contenido
 en la celda cerrada, tiene el mismo efecto que la
 levadura cuando se hornea una tarta. Una vez
 sometida a preexpansión reacciona y se libera
 dejando sólo aire en el interior. Esta substancia
 se encuentra en la naturaleza y además no es
 un gas causante del efecto invernadero ni daña
 la capa de ozono.
- Existen ensayos en Alemania que han determinado las emisiones de compuestos orgánicos volátiles (COVs) de planchas de aislamiento con EPS. Todos los productos analizados cumplieron con los requisitos en relación a la seguridad en el uso de productos de construcción para ambiente interior.
- El EPS es reciclable a través de medios mecánicos con un muy bajo consumo energético, el subproducto derivado se puede incorporar nuevamente a la creación de nuevos productos para la construcción.

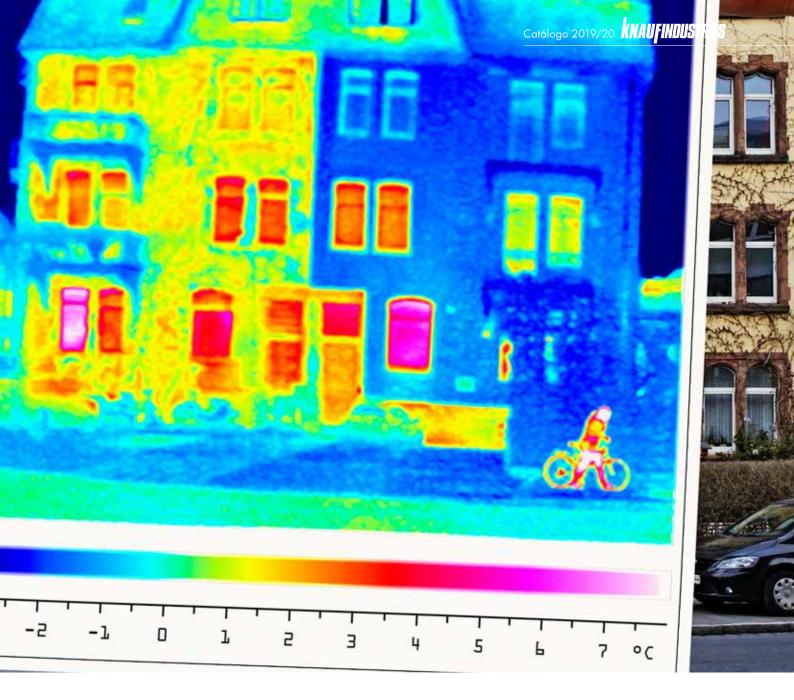
Tabla de valores 1 correspondientes al indice Δ OI3 del EPS

Material de construcción	NRPE MJ *)	GWP100 kg SO2- Äquiv. *)	AP kg SO2- Äquiv. *)	ΔΟΙ3 (¹)	N° de EPD
EPS gris	43,19	1,51	0,0038	2,19	EPD-EUM-20160273-IBG1-EN
EPS blanco	48,51	1,69	0,0043	2,47	EPD-EUM-20160269-IBG1-EN
Fibra de Madera	98,45	-10,08	0,0116	3,15	PAV-2013254-CBG2-DE
Fibra de cáñamo	56,80	-2,60	0,0139	3,32	baubook-Nr. 9224 aa
Espuma Mineral	60,75	4,55	0,0084	3,90	EPD-XEL-20140218-CAD1-DE
Lana Mineral	75,88	5,53	0,0412	8,94	EPD-DRW-20120113-IBC2-DE

^{*)} por unidad funcional (= 1 m² resistencia térmica equivalente) Fuente: Institut Bauen und Umwelt e.V. (IBU) y baubook

Proteger

Aislamiento óptimo


El aire es un conductor de calor extremadamente pobre. Esta es la razón por la que en condiciones de frío las aves hinchan sus plumas para aumentar la cantidad de aire atrapado y aislarse mejor. El EPS debe sus excelentes propiedades de aislamiento al hecho de que el 98% del mismo es solo aire, encerrado en pequeñas células de su estructura.

Valorizar

Aumenta su valor

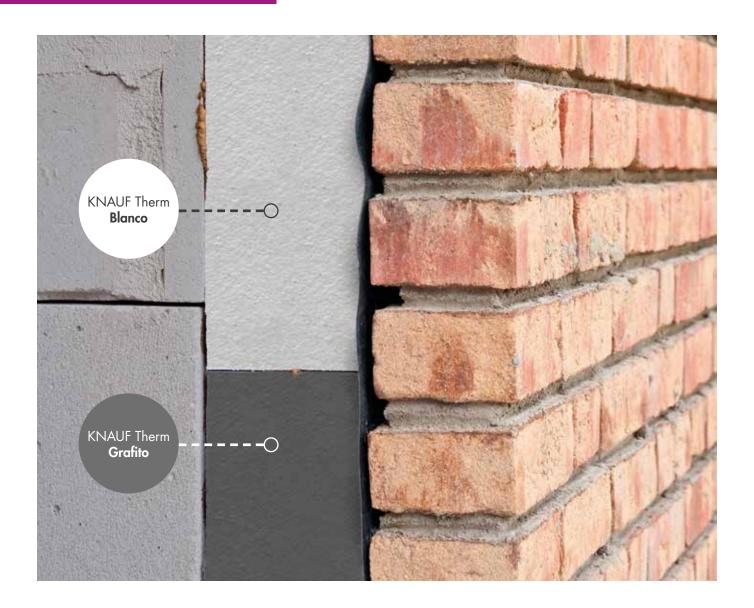
La incorporación de sistemas de aislamiento y/o por el exterior permite que la construcción tenga una mejor clasificación energética que aumenta el valor de la edificación. Además de un tiempo a esta parte han ido apareciendo nuevos elementos decorativos que realzan y embellecen las construcciones, rejuveneciendo su aspecto exterior.

Garantizar

Asegura la calidad

La marca "N" de AENOR para aislantes térmicos certifica la calidad de los aislantes. Es una certificación voluntaria que Knauf ha adoptado como exigencia para todos sus productos de aislamiento. Un producto certificado asegura que cumple los requisitos mas exigentes, y garantiza que el producto ha sido verificado previamente conforme el CTE.

Ahorrar



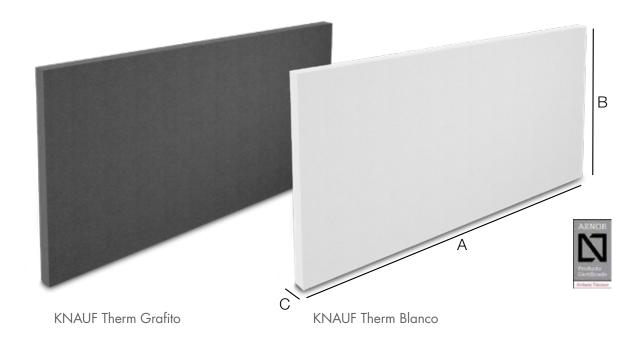
Reducción de consumo de energía

El EPS está constituido en un 98% por aire y tan solo un 2% de poliestireno. Por cada litro de petróleo utilizado en la fabricación de aislamiento de EPS para edificación, se ahorran hasta 200 litros de combustible para calefacción durante la vida útil de este material.

KNAUF THERM®

Aislamiento de cámara

Panel de canto recto a las cuatro caras


Cerramiento de doble hoja

Los paneles Knauf Therm, con una amplia gama de conductividades, son la alternativa cuando se necesita un producto con un buen comportamiento térmico.

Adecuado para la instalación en cámara de cerramiento de doble hoja, y en trasdosado por el interior para acabado posterior con placa de yeso laminado o directamente enlucido.

Como todos los productos de la gama Knauf Therm, ofrecen un amplio abanico de características certificadas tanto desde el punto de vista térmico como mecánico.

Medidas estándar								
A (mm)	B (mm)	C (mm)						
2000	1000	10 / 20 / 30 / 40 / 50 / 60 / 70 / 80						

Dimensiones	2000 x 1000
Cantos	
Acabado superficial	Liso

(*) otras medidas posibles

Características gama Knauf Therm									
Característica	F	N1	Th31SE	Th32SE	Th34SE	Th35SE	Th37SE	Th39SE	Bâtiment
Caracteristica	Espesor	Norma ensayo	Gro	afito		Bla	nco		
Número de certificado AENO	R				020/003330	020/003329	020/002783	020/003328	
Conductividad térmica (W/mk	()	UNE EN 12667	0,031	0,032	0,034	0,035	0,037	0,039	0,045
Desistancia térmica (m.21//\d/\	min.: 10 mm	LINE EN 10//7	0,30	0,30	0,25	0,25	0,25	0,25	0,20
Resistencia térmica (m ² K/W)	max:400 mm	UNE EN 12667	12,90	12,50	11,75	11,40	10,80	10,25	8,85
Estabilidad dimensional a 70 °	°C y 90 % HR (%)	UNE EN 1604			NPD	NPD	NPD	NPD	
Resistencia a flexión (kPa)		UNE EN 12089			≥ 250	≥ 150	≥ 150	≥ 100	
Resistencia a compresión (kPa)		UNE EN 826			NPD	≥ 100	NPD	NPD	
Estabilidad dimensional en c.n	. (%)	UNE EN 1603			± 0,5	± 0,5	± 0,5	± 0,5	
Resistencia a tracción (kPa)		UNE EN 1607			NPD	≥ 150	NPD	NPD	
Factor de resistencia a difusión	n vapor de agua	UNE EN 12086			NPD	NPD	NPD	NPD	
Clase de reacción al fuego		UNE EN 13501-1	Е	Е	Е	Е	Е	Е	Е
		Códigos	designaci	ón					-
KNAUF Therm Th31 SE	EPS-EN 13163-L(3)-W(3)-T(2)-S(5)-P(10)						
KNAUF Therm Th32 SE	EPS-EN 13163-L(3)-W(3)-T(2)-S(5)-P(10)								
KNAUF Therm Th34 SE EPS-EN 13163-L(3)-W(3)-T(2)-S(5)-P(1))-DS(N)5-B	S250					
KNAUF Therm Th35 SE	EPS-EN 13163-L(3)-W(3)-T(2)-S(5)-P(10)-DS(N)5-TR150-CS(10)100-BS150								
KNAUF Therm Th37 SE	E EPS-EN 13163-L(3)-W(3)-T(2)-S(5)-P(10)-DS(N)5-BS150								
KNAUF Therm Th39 SE	EPS-EN 13163-L(EPS-EN 13163-L(3)-W(3)-T(2)-S(5)-P(10)-DS(N)5-BS100							
KNAUF Therm Bâtiment	EPS-EN 13163-L(3)-W(3)-T(2)-S(5)-P(10)						

CLIMATERM®

Aislamiento de cámara

Panel machihembrado a las cuatro caras.

Utilizable en cerramientos de doble hoja (montaje en cámara) tanto en obra nueva como en rehabilitación.

Climaterm es la gama de productos para aislamiento térmico, especialmente diseñada para cerramientos verticales desarrollados por la empresa Knauf para contribuir al confort, al ahorro energético y a la sostenibilidad. Los cerramientos verticales se estiman que constituyen el 40% del total de las pérdidas térmicas de un edificio. Minimizar esas pérdidas mediante el aislamiento térmico adecuado de las fachadas se convierte en un objetivo prioritario del tratamiento del conjunto de los cerramientos.

一

Otras características importantes:

- Machihembrado a las cuatro caras que elimina la formación de puentes térmicos.
- Dimensionado standard de los paneles que permite obtener directamente las alturas entre forjados más habituales, combinando longitud y anchura de los paneles para cubrir alturas de 2,40 - 2,60 y 2,90 m con el consiguiente ahorro de mano de obra y menor desperdicio de material.
- Amplia gama de conductividades y espesores para adaptarse a las exigencias de aislamiento térmico del proyecto.

Dimensiones	1300 x 800
Cantos) 4
Acabado superficial	Liso

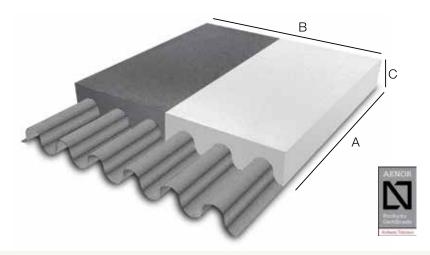
Características gama Climaterm										
Característica Espesor Norma ensayo										
Caracteristica	Espesor	Norma ensayo	Blai	nco						
Número de certificado AENOR			020/002987	020/002986						
Conductividad térmica (W/mK)		UNE EN 12667	0,039	0,037						
Designation signature in an Imp2V /\A/\	min.: 40 mm	UNE EN 12667	1,00	1,05						
Resistencia térmica (m ² K/W)	max.: 120 mm	UNE EN 12007	3,05	3,2						
Estabilidad dimensional a 70 °C	y 90 % HR (%)	UNE EN 1604	≤ 1	≤ 1						
Resistencia a flexión (kPa)		UNE EN 12089	≥ 50	≥ 50						
Resistencia a compresión (kPa)		UNE EN 826	NPD	NPD						
Estabilidad dimensional en c.n. (%)	UNE EN 1603	± 0,5	± 0,5						
Resistencia a tracción (kPa)		UNE EN 1607	NPD	NPD						
Factor de resistencia a difusión v	apor de agua	UNE EN 12086	NPD	NPD						
Clase de reacción al fuego		UNE EN 13501-1	Е	Е						
Códigos designación										
Climaterm 39	EPS-EN 13163-T(2)-L(3)-W(3)-S(5)-P(10)-DS(N)5-DS(70,90)1*-BS50*									
Climaterm 37 EPS-EN 13163-T(2)-L(3)-W(3)-S(5)-P(10)-DS(N)5-DS(70,90)1*-BS50*										

^{*} Cambios en 2020

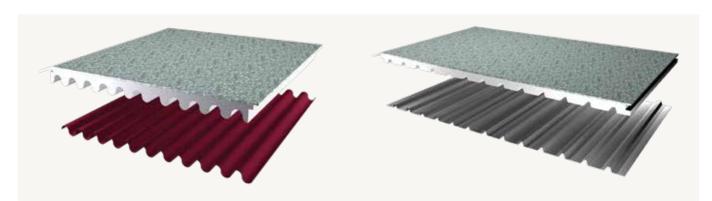
KNAUF THERM® RC

Knauf Therm® RC

Aislamiento de cubiertas


Panel de geometría específica para rehabilitación y aislamiento térmico de cubiertas.

Nuestro sistema de aislamiento térmico de cubiertas ha sido desarrollado especialmente para la rehabilitación. En edificios de uso agrícola o industrial construidos hace 30 años o más es habitual encontrar que las cubiertas están realizadas con placas onduladas que contienen amianto, lo que hace difícil y costosa su sustitución y eliminación. Estas placas se pueden aislar térmicamente y a la vez rehabilitar recubriéndolas con paneles de aislamiento térmico Knauf Therm RC cortados a medida, de modo que reproducen y se ajustan al perfil de las placas de cubierta. Se fijan a las placas preexistentes, confinándolas.


El mismo tipo de solución es válido para cubiertas de chapa grecada que necesiten alcanzar unas altas prestaciones de aislamiento térmico. El perfil de los paneles Knauf Therm reproduce el de las placas metálicas, ajustándose perfectamente a éstas.

Medidas estándar*		
A (mm)	B (mm)	C (mm)
1200	1140	70 / 80 / 90 / 100 / 120

(*) otras medidas posibles

Características gama KNAUF Therm RC

J							
C	Г	NI	RC Th32	RC Th35	RC Th39		
Característica	Espesor	Norma ensayo	Grafito	Blar	nco		
Número de certificado AENOR				020/003329	020/003328		
Conductividad térmica (W/mK)		UNE EN 12667	0,032	0,035	0,039		
Decistor of a thirm in a large / \\/\	min: 70 mm	- UNE EN 12667	2,15	2,00	1,75		
Resistencia térmica (m ² K/W)	max: 120 mm	UNE EN 1200/	3,75	3,40	3,05		
Estabilidad dimensional a 70 °C	y 90 % HR (%)	UNE EN 1604	NPD	NPD	NPD		
Resistencia a flexión (kPa)	UNE EN 12089	NPD	≥ 150	≥ 100			
Resistencia a compresión (kPa)	UNE EN 826	NPD	≥ 100	NPD			
Estabilidad dimensional en c.n.	UNE EN 1603	NPD	± 0,5	± 0,5			
Resistencia a tracción (kPa)		UNE EN 1607	NPD	≥ 150	NPD		
Factor de resistencia a difusión	vapor de agua	UNE EN 12086	NPD	NPD	NPD		
Clase de reacción al fuego		UNE EN 13501-1	Е	Е	Е		
Códigos designación							
KNAUF Therm RC Th32	EPS-EN 13163-L(.(3)-W(3)-T(2)-S(5)-P(10)					
KNAUF Therm RC Th35	Th35 EPS-EN 13163-L(3)-W(3)-T(2)-S(5)-P(10)-DS(N)5-TR150-CS(10)100-BS150						
KNAUF Therm RC Th39							



KNAUF Therm ETIX®

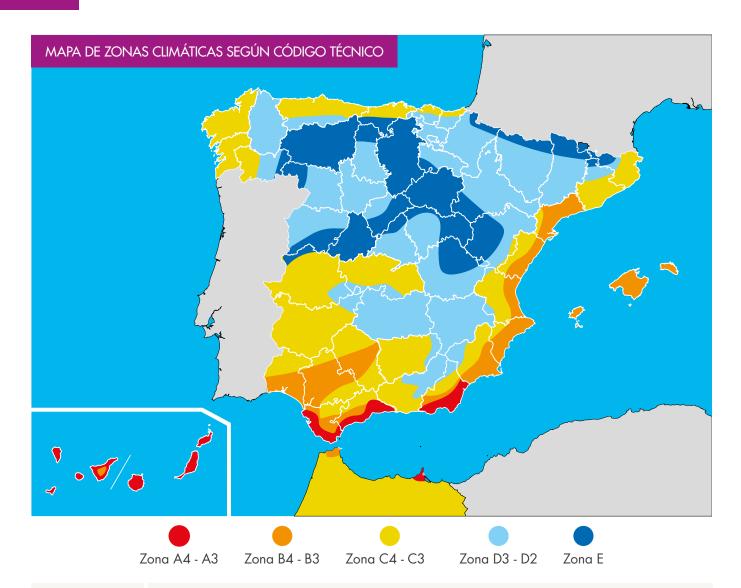
Panel específicamente estabilizado para exterior Rehabilitación de fachada por el exterior

Cuando se trata de rehabilitación de cerramientos de edificios con déficit de aislamiento, la solución más utilizada en la fachada es la aplicación de una segunda piel a la totalidad del cerramiento, siguiendo los procedimientos de los SATE, Sistemas de Aislamiento Térmico por el Exterior (ETICS, en su acepción en inglés).

La rehabilitación térmica por el exterior reduce la demanda energética del edificio haciéndolo más sostenible, y proporciona otras importantes ventajas además de las mencionadas para obra nueva:

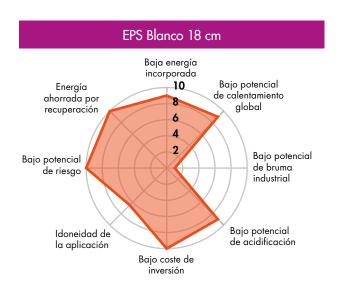
Ventajas

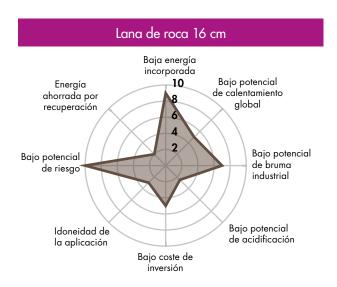
- La obra se ejecuta sin necesidad de desalojar el edificio.
- No reduce el espacio útil.
- Comporta la renovación total del aspecto de la fachada.
- Tiene bajo coste de mantenimiento.
- La inversión realizada en aislamiento se amortiza en pocos años.

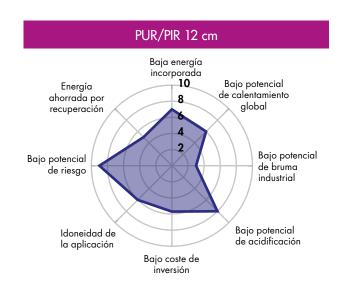


Características KNAUF Therm ETIX

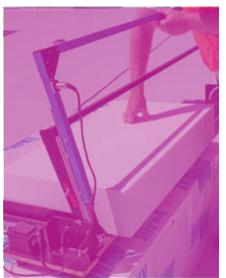
			Resultados				
Característica	Espesor	Norma ensayo	KNAUF Therm ETIX GRAFIT	KNAUF Therm ETIX			
			Grafito	Blanco			
Número de certificado AENOR			020/003483	020/003503			
Conductividad térmica (W/mK)		UNE EN 12667	0,032	0,037			
Decistor signatural and Invalv (NAI)	min: 40 mm	UNE EN 12667	1,25	1,05			
Resistencia térmica (m ² K/W)	max: 400 mm	UINE EIN 1200/	12,50	10,80			
Estabilidad dimensional a 70 °C (%)		UNE EN 1604	≤ 1	≤ 1			
Estabilidad dimensional a 70 °C y 9	O % HR (%)	UNL LIN 1004	≤ 1	≤ 1			
Resistencia a flexión (kPa)	UNE EN 12089	≥ 100	≥ 150				
Resistencia a compresión al 10% de	UNE EN 826	≥ 60	≥ 60				
Estabilidad dimensional en c.n. (%)	UNE EN 1603	± 0,2	± 0,2				
Resistencia a tracción (kPa)	UNE EN 1607	≥ 100	≥ 150				
Absorción agua a largo plazo inme	rsión total (% vol.)	UNE EN 12087	≤ 5	≤ 5			
Factor resistencia a difusión vapor d	e agua μ (Adimens.)	UNE EN 12086	MU(20-40)	MU(20-40)			
Resistencia a cortante (kPa)		UNE EN 12090	50	50			
Módulo cortante (kPa)		UNL LIN 12090	1000	1000			
Clase de reacción al fuego	UNE EN 13501-1	Е	Е				
Código designación							
KNAUF Therm EPS-EN 13163-L(2)-W(2)-T(1)-S(2)-P(3)-DS(N)2-DS(70,-)1-DS(70,90)1-MU(20-40)-BS100-CS(10)60 TR100-WL(T)5-GM1000-SS50							




	Espesores necesarios (cm) para cumplir el valor U según el CTE								
	CTE				CTE-PLUS				
Zonas climáticas	Fachadas		Cubiertas		Fachadas		Cubiertas		
Zorias cilitaricas	Aislamiento	valor U	Aislamiento	valor U	Aislamiento	valor U	Aislamiento	valor U	
	(mm)	(W/m ² K)	(mm)	(W/m^2K)	(mm)	(W/m ² K)	(mm)	(W/m ² K)	
A3 - Málaga	30,00	0,94	60,00	0,50	80,00	0,45	110,00	0,31	
• A4 - Almería	30,00	0,94	60,00	0,50	80,00	0,45	110,00	0,31	
B3 - Valencia	35,00	0,82	66,00	0,45	90,00	0,40	120,00	0,29	
B4 - Sevilla	35,00	0,82	66,00	0,45	90,00	0,40	120,00	0,29	
Ol - A Coruña	43,00	0,73	75,00	0,41	130,00	0,29	170,00	0,22	
O2 - Barcelona	43,00	0,73	75,00	0,41	130,00	0,29	170,00	0,22	
O3 - Granada	43,00	0,73	75,00	0,41	130,00	0,29	170,00	0,22	
O4 - Cáceres	43,00	0,73	75,00	0,41	130,00	0,29	170,00	0,22	
D1 - Pamplona	47,00	0,66	83,00	0,38	140,00	0,28	170,00	0,22	
D2 - Valladolid	47,00	0,66	83,00	0,38	140,00	0,28	170,00	0,22	
D3 - Madrid	47,00	0,66	83,00	0,38	140,00	0,28	170,00	0,22	
● E1 - Burgos	58,00	0,57	93,00	0,36	190,00	0,21	220,00	0,17	


ф*

Sostenibilidad del EPS frente a otros materiales



Evaluación y comparación del aislamiento en SATE

La consultora suiza independiente Büro für Umweltchemie (BFU) ha desarrollado una evaluación "multi-parámetros" y una comparación de diferentes materiales de aislamiento. El resultado es una herramienta gráfica simple y práctica que visualiza las fortalezas y debilidades de los materiales aislantes en diversas aplicaciones. En el caso del SATE (Sistema de Aislamiento Térmico por el exterior), los diagramas de tela de araña muestran que el EPS tienen los mejores resultados globales en la fase de producción junto con la fibra de madera. El EPS necesita la menor y es el material más adecuado para esta aplicación. Cuando se trata de demolición y reciclado, tanto el EPS como la fibra de madera ofrecen el mejor ahorro de energía. PUR / PIR tiene puntuaciones medias totales. La lana de roca no tiene ninguna ventaja particular en un SATE.

KNAUFINDUSTRIES

Ł

CENTRAL KNAUF INDUSTRIES VILAFRANCA

Calle Calafell, n° 1 ES-08720 Vilafranca del Penedès (Barcelona) +(34) 93 890 6905 hola-knauf@knauf.fr

KNAUF INDUSTRIES AOIZ

Polígono industrial de Aoiz Calle B, n° 14 ES-31430 Aoiz (Navarra) +(34) 94 833 6607 hola-knauf@knauf.fr

KNAUF INDUSTRIES VALENCIA

Polígono Industrial El Braç Avda. de la Marina, nº 10 ES-46131 Bonrepós i Mirambell (Valencia) +(34) 96 185 2875 hola-knauf@knauf.fr

KNAUF INDUSTRIES ZARAGOZA

Polígono Industrial Malpica Calle D, parcela 64 ES-50016 Zaragoza +(34) 97 645 7636 hola-knauf@knauf.fr

KNAUF INDUSTRIES VALLADOLID

Poligono Industrial de San Cristobal Calle Cobalto, n° 67 ES-47012- Valladolid +(34) 98 329 9366 hola-knauf@knauf.fr

KNAUF INDUSTRIES BILBAO

Poligono Industrial El Campillo II Parcela 8.4 ES-48500 Abanto (Vizcaya) +(34) 94 636 0359 hola-knauf@knauf.fr

KNAUF INDUSTRIES PAMPLONA

Polígono Comarca II Calle F, n° 16, ES-31191 – Barbatain (Navarra) +(34) 94 831 6371 hola-knauf@knauf.fr **KNAUFINDUSTRIES**

www.knauftherm.es